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Introduction 

During the 88-89 Tevatron collider run, 6 antiproton 
bunches were colliding head-on with 6 proton bunches at 
12 crossing points symetrically distributed around the ring. 
Typical intensities were 7 x 10” and 2.5 x 1O’O particles 
per bunch for protons and antiprotons respectively. The 
normalized transverse proton emittance (95 % definition) 
was typically 25 r mm-mr on both planes and the antipro- 
ton transverse emittance was typically 18 r mm-mr. The 
working point (unshifted horizontal and vertical tunes) was 
near 19.41. 

Given the working point and typical tune spreads of 
about 0.024, it is unavoidable that the lYh order ESO 
nance will affect some of the antiprotons. This resonance 
was certainly felt by the a > 20 particles in the 88-89 
run when proton and antiproton emittances were equal. 
The situation improved when the proton emittance was 
increased. 

In this paper, we determine the range of critical reso- 
nances by applying the analytic theory of tune-modulated 
beam-beam resonances to the 88-89 run and to the main 
injector upgrade scenario. The analytic theory neglects 
long-range tune shifts and resonances. 

Threshold Condition 

For a complete discussion of the theory we refer the 
reader to References [l] and [Z]. Here we repeat the thresh- 
old condition for synchrobetatron sideband overlap, 
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where N is the order and a E a/u is the normalized am- 
plitude of the resonance, and m is the number of head-on 
beam-beam interactions. It is supposed that, owing to an 
external modulating source, the perturbed bet&on tune 
is given by 

& = Qo + q sin(2?rQ,t) (2) 

where Qo is the unperturbed bet&on tune, 4 is the am- 
plitude of the modulation (modulation depth), &~ is the 
modulation tune, and t is the turn number. The resonance 
analysis is done at a particular point in the ring and “time” 
for the purposes of this analysis is discretized. One source 
of tune modulation is ripple in the current supplied to some 
of the guide field magnets. A more systematic source is the 
chromatic tune variation due to energy oscillations (syn- 
chrotron oscillations). As the momentum of the particle 
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changes the effective focusing strength also changes, re- 
sulting in tune modulation. The detuning function D(a) 
and the resonance width function VN(~) are explained be- 

low. The &,; are the so called resonance vectors 

&i = 6 exp(.iN$i) (3) 

where fi and & are the tune shift parameter and the be- 
tatron phase of the i’th collision, and j s a. Properly 
speaking, &vi is a phasor since time (number of turns) is 
eliminated from this expression. 

Detuning Function and Resonance Width 
We restrict our attention to one transverse dimensioll. 

Moderate amplitude nonresonant oscillations in a second 
dimension appear to have little influence ou chaotic ba- 
haviour in the first dimension[Z]. 

Consider a collider with a single beam-beam collision 
per turn. The bet&on tune of a test particle depends on 
its amplitude, according to 

Q(a) = Qo + <D(Q) (4) 

where D(a) is the so called “detuning function” and E is 
the “beam-beam tune shift parameter” which is equal to 
the tune shift experienced by a small amplitude particle. 
If colliding bunches have Gaussian transverse charge dis- 
tributions of the same size (round beams), the detuning 
function has the exact analytic form[3] 

D(a) =40-z [I - ezp(-c2/4)Io(c2/4)] (5) 

Here I, is a modified Bessel function. A beam-beam reso- 
nance of order N is present if the tune is equal to a ratio- 
nal fraction n/N at some amplitude a,~. The resonance 
islands have a full width given by 
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For round beams the “resonance width funclion” VN(O) is 
(even order only) [3] 

V,(a) = Jn- $ ezp-ru2/4) I~,~(ce~/4)da (i) 

Tune Modulation 
Tune modulation causes a family of synchrobetatron 

sideband resonances to appear, at time-averaged tunes of 

Q(e) = nlN + P QaIN (8) 
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Figure 1: Simulated trajectories tracked for 2000 modu- 
lation periods, with Q, = 0.005 and an unshifted tune of 
0.331, near a sixth-order beam-beam resonance. The two 
left figures have no tune modulation, while the two right 
figures have modulation amplitude p = 0.001. The two top 
figures have a tune shift parameter of E = 0.0042, while the 
two bottom figures have a value t = 0.0060. Side bands 
p = +l, 0, -1, and -2, visible in (b) at increasing ampli- 
tudes, overlap and are submerged in a chaotic sea in (d). 

where p is an integer. This situation is depicted in 
Fig.(l)(a,b) where the sideband islands surround the be- 
tatron islands. The full width of the p’” sideband is given 
(if the sidebands do not overlap) by 

Aa,, = 4 
VN(~~)WJPIQ~) I’* 

up’(~) IcT=o, I 
(9) 

Here J is the p’” integer order Bessel function, and o 
is the &tetatron amplitude corresponding to this sideban B 
The magnitude of JP is of the order of 

and the other summation is easier since the phase infor- 
mation is not needed. 

JpP’dQ.) = (Q./~Nd”2 (10) Critical Resonances 
if 

E- N rI<Q(ap) < ++q 

and very small if condition 11 is violated. The physical 
interpretation of this condition is as follows. Because of the 
tune modulation, the “instantaneous” tune varies between 
Q(o) - q and Q(a) + 9, For the resonance to have effect, 
this tune must cross n/N. So, if Q(a) < (n/N - q) or 
Q(a) > (n/N + n), the tune never reaches the resonance 
condition and the sidebands are suppressed. Sidebands BPZ 
separated in amplitude from each other by 

Ao, = (Q,IN) - Q. 
Q'(o) h’[D’(o) (12) 

As the beam-beam tune shift parameter [ is increased, the 
sidebands remain constant in size while their separations 
decrease. When Arr, < An,,, the sidebands overlap and 

8 chaotic layer is formed in phase-space flow BL~ shown in 
Fig.(l)(d). In other words, there is overlap if 

c > Em.r = $*n)"'(Qd3" ( NB,'&'(~))~'~ 
Cl.?) 

which is very similar to Equation 1 but needs to be gener- 
al&d to multiple collisions. 

The generalized Ao. and Aa,, are [2] 

Aa, = 
Q. 

N. El &vi 1 .D’(cr) 
(14) 
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Using the overlap condition Aa, < Ao,, and Equa- 
tions 14,15 and rearranging we obtain Equation 1, the 
threshold equation. Given the order of the bet&on res- 
onance N, the particle amplitude u, the tune modula- 
tion frequency Q. and depth 9, the threshold equation 
tells whether the beam-beam strength parameter < is large 
enough to cause an overlap of sideband resonances. 

Summing the Beam-Beam Resonance Vec- 
tors 

We are now ready to calculate the terms on the left hand 

side of Equation 1. The calculation of 15 &i I requires the 
knowledge of phases at crossing points. There is typic,ally 
a several percent error in the lattice functions, and It 1s 
difficult to know the phases exactly enough at the crossing 
points. We simply take the root mean square average of 
the resonance vectors &i , namely, we approximate 

I? hi I = (=PC 

The threshold condition, Eq.(l), defines the highest or- 
der bet&on resonance that allows side-band overlap in the 
presence of tune modulation. From here on we shall call 
these critical resonances Criticalresonances are calculated 
graphically from Fig.(2) where the right hand side ofEq.(l) 
is plotted for different N. We ignore long-range mterac- 
tions in the summation of beam-beam resonance vectors 
(left hand side of the threshold equation) but do not ignore 
odd-resonances (right hand side of the threshold equation) 
since they are not fully suppressed by the symetry of the 
beam-beam interaction. 

The curves in Fig.(2) have been calculated using realis- 
tic Tevatron parameters. For instancei a chromaticity of 
AQ/(Aplp) = 5 and up/p = 1.5 x lo- was used, assum- 
ing that the source of the tune modulation was synchrotron 
oscillations at a frequency of 37 Hz in the Tevatron at 
900 GeV. These numbers translate into Q. = O.OOOi5 and 
p = 0.00075. 
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Figure 2: Right hand side of Eq.(l) plotted for various N. 
Chromaticity = 5 units. 
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Figure 3: Bed-of-Nails plot for the 88-89 Collider Run. 

Bed-of-Nails Plots 

Critical resonances are displayed in Fig.(3) and Fig.(4). 
In these figures, nails have different heights representing 
the order of the resonance. Even-order resonances are 
shown by solid lines and odd-order resonances by dashed 
ones. Lower order resonances are represented by taller 
nails. The tune spread is shown by the horizontal error bar, 
the position of which carries crucial information. Its ver- 
tical position indicates t,he critical resonance for ~1 = 2.5. 
The vertical error bar shows the range of critical resonances 
for particles in the range @ = 2 to a = 3. The point where 
the horizontal and the vert,ical error bars cross each other 
roughly gives the beam-beam shifted average tune. The 
working point (unshift,ed tune) is near the left edge of the 
horizontal bar. 
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Figure 4: Bed-of-Nails plot for the Collider Run with the 
Main Injector. 

Conclusions 

Fig.(3) depicts the situation in the 88-89 collider run. 
The analytic theory of tune modulated beam-beam rest 
nances correctly predicts the lack of importance of the 12’” 
order resonance, since it only just affects D = 2.6 - 3.0 an- 
tiprotons. For (L = 2 antiprotons the theory predicts no 
trouble from 12’h, which was the case when proton emit- 
tance was increased artificially, effectively making all an- 
tiproton amplitudes a z ap/up < 2. Protons in the 88-89 
run were comfortably away from the 12’” since the antipro 
ton intensity was low and the beam-beam tune shift per 
crossing experienced by protons was small. 

Examining Fig.(4) we find that for the Collider Run with 
the Main Injector, the horizontal error bar tune spread) 

I ” is smaller and the vertical error bar (range o crltlcal rest 
nances for amplitudes a = 2-3) is approximately the same 
compared to those of the 88-89 run. Having a smaller tune 
spread is an important improvement since we gain freedom 
to adjust the working point. The size of the vertical error 
bar being equal to that of the 88-89 run is also good news 
since it means that the 12’” order resonance will only affect 
the antiprotons in the transverse tails. 
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